jueves, 4 de abril de 2013

Algebra Lineal Elemental - S. Andrilli, D. Hecker - 4ed

Álgebra Lineal Elemental desarrolla y explica con detalle las técnicas computacionales y los resultados teóricos fundamentales para un primer curso de Álgebra Lineal. Este aclamado texto se centra en el desarrollo del pensamiento abstracto, esencial para el estudio matemático

Los autores dan atención temprana e intensiva a las habilidades necesarias para hacer que los estudiantes se sientan cómodos con las pruebas matemáticas. Además, el texto construye una transición gradual y suave de los resultados computacionales para la teoría general de espacios vectoriales abstractos. También proporciona cobertura flexible de aplicaciones prácticas, explorando una amplia gama de temas.
 
 
Título: Elementary Linear Algebra
Autores: Stephen Andrilli, David Hecker
Edición: 4ta Edición
Tipo: Libro
Idioma: English 


Chapter 1: Vectors and Matrices
    Section 1.1: Fundamental Operations with Vectors
    Section 1.2: The Dot Product
    Section 1.3: An Introduction to Proof Techniques
    Section 1.4: Fundamental Operations with Matrices
    Section 1.5: Matrix Multiplication

Chapter 2: Systems of Linear Equations
    Section 2.1: Solving Linear Systems Using Gaussian Elimination
    Section 2.2: Gauss-Jordan Row Reduction and Reduced Row Echelon Form
    Section 2.3: Equivalent Systems, Rank, and Row Space
    Section 2.4: Inverses of Matrices

Chapter 3: Determinants and Eigenvalues
    Section 3.1: Introduction to Determinants
    Section 3.2: Determinants and Row Reduction
    Section 3.3: Further Properties of the Determinant
    Section 3.4: Eigenvalues and Diagonalization
    Summary of Techniques

Chapter 4: Finite Dimensional Vector Spaces
    Section 4.1: Introduction to Vector Spaces
    Section 4.2: Subspaces
    Section 4.3: Span
    Section 4.4: Linear Independence
    Section 4.5: Basis and Dimension
    Section 4.6: Constructing Special Bases
    Section 4.7: Coordinatization

Chapter 5: Linear Transformations
    Section 5.1: Introduction to Linear Transformations
    Section 5.2: The Matrix of a Linear Transformation
    Section 5.3: The Dimension Theorem
    Section 5.4: Isomorphism
    Section 5.5: Diagonalization of Linear Operators

Chapter 6: Orthogonality
    Section 6.1: Orthogonal Bases and the Gram-Schmidt Process
    Section 6.2: Orthogonal Complements
    Section 6.3: Orthogonal Diagonalization

Chapter 7: Complex Vector Spaces and General Inner Products
    Section 7.1: Complex n-Vectors and Matrices
    Section 7.2: Complex Eigenvalues and Eigenvectors
    Section 7.3: Complex Vector Spaces
    Section 7.4: Orthogonality in Cn
    Section 7.5: Inner Product Spaces

Chapter 8: Additional Applications
    Section 8.1: Graph Theory
    Section 8.2: Ohm's Law
    Section 8.3: Least-Squares Polynomials
    Section 8.4: Markov Chains
    Section 8.5: Hill Substitution: An Introduction to Coding Theory
    Section 8.6: Change of Variables and the Jacobian
    Section 8.7: Rotation of Axes
    Section 8.8: Computer Graphics
    Section 8.9: Differential Equations
    Section 8.10: Least-Squares Solutions for Inconsistent Systems
    Section 8.11: Max-Min Problems in Rn and the Hessian Matrix

Chapter 9: Numerical Methods
    Section 9.1: Numerical Methods for Solving Systems
    Section 9.2: LDU Decomposition
    Section 9.3: The Power Method for Finding Eigenvalues

Chapter 10: Further Horizons
    Section 10.1: Elementary Matrices
    Section 10.2: Function Spaces
    Section 10.3: Quadratic Forms

Appendix A: Miscellaneous Proofs
Appendix B: Functions
Appendix C: Complex Numbers
Appendix D: Computers and Calculators
Appendix E: Answers to Selected Exercises

No hay comentarios:

Publicar un comentario