Álgebra Lineal Elemental desarrolla y explica con detalle las técnicas computacionales y los resultados teóricos fundamentales para un primer curso de Álgebra Lineal. Este aclamado texto se centra en el desarrollo del pensamiento abstracto, esencial para el estudio matemático.
Los autores dan atención temprana e intensiva a las habilidades necesarias para hacer que los estudiantes se sientan cómodos con las pruebas matemáticas. Además, el texto construye una transición gradual y suave de los resultados computacionales para la teoría general de espacios vectoriales abstractos. También proporciona cobertura flexible de aplicaciones prácticas, explorando una amplia gama de temas.
Los autores dan atención temprana e intensiva a las habilidades necesarias para hacer que los estudiantes se sientan cómodos con las pruebas matemáticas. Además, el texto construye una transición gradual y suave de los resultados computacionales para la teoría general de espacios vectoriales abstractos. También proporciona cobertura flexible de aplicaciones prácticas, explorando una amplia gama de temas.
Título: Elementary Linear Algebra
Autores: Stephen Andrilli, David Hecker
Edición: 4ta Edición
Tipo: Libro
Idioma: English
Chapter 1: Vectors and Matrices
Section 1.1: Fundamental Operations with Vectors
Section 1.2: The Dot Product
Section 1.3: An Introduction to Proof Techniques
Section 1.4: Fundamental Operations with Matrices
Section 1.5: Matrix Multiplication
Chapter 2: Systems of Linear Equations
Section 2.1: Solving Linear Systems Using Gaussian Elimination
Section 2.2: Gauss-Jordan Row Reduction and Reduced Row Echelon Form
Section 2.3: Equivalent Systems, Rank, and Row Space
Section 2.4: Inverses of Matrices
Chapter 3: Determinants and Eigenvalues
Section 3.1: Introduction to Determinants
Section 3.2: Determinants and Row Reduction
Section 3.3: Further Properties of the Determinant
Section 3.4: Eigenvalues and Diagonalization
Summary of Techniques
Chapter 4: Finite Dimensional Vector Spaces
Section 4.1: Introduction to Vector Spaces
Section 4.2: Subspaces
Section 4.3: Span
Section 4.4: Linear Independence
Section 4.5: Basis and Dimension
Section 4.6: Constructing Special Bases
Section 4.7: Coordinatization
Chapter 5: Linear Transformations
Section 5.1: Introduction to Linear Transformations
Section 5.2: The Matrix of a Linear Transformation
Section 5.3: The Dimension Theorem
Section 5.4: Isomorphism
Section 5.5: Diagonalization of Linear Operators
Chapter 6: Orthogonality
Section 6.1: Orthogonal Bases and the Gram-Schmidt Process
Section 6.2: Orthogonal Complements
Section 6.3: Orthogonal Diagonalization
Chapter 7: Complex Vector Spaces and General Inner Products
Section 7.1: Complex n-Vectors and Matrices
Section 7.2: Complex Eigenvalues and Eigenvectors
Section 7.3: Complex Vector Spaces
Section 7.4: Orthogonality in Cn
Section 7.5: Inner Product Spaces
Chapter 8: Additional Applications
Section 8.1: Graph Theory
Section 8.2: Ohm's Law
Section 8.3: Least-Squares Polynomials
Section 8.4: Markov Chains
Section 8.5: Hill Substitution: An Introduction to Coding Theory
Section 8.6: Change of Variables and the Jacobian
Section 8.7: Rotation of Axes
Section 8.8: Computer Graphics
Section 8.9: Differential Equations
Section 8.10: Least-Squares Solutions for Inconsistent Systems
Section 8.11: Max-Min Problems in Rn and the Hessian Matrix
Chapter 9: Numerical Methods
Section 9.1: Numerical Methods for Solving Systems
Section 9.2: LDU Decomposition
Section 9.3: The Power Method for Finding Eigenvalues
Chapter 10: Further Horizons
Section 10.1: Elementary Matrices
Section 10.2: Function Spaces
Section 10.3: Quadratic Forms
Appendix A: Miscellaneous Proofs
Appendix B: Functions
Appendix C: Complex Numbers
Appendix D: Computers and Calculators
Appendix E: Answers to Selected Exercises
Autores: Stephen Andrilli, David Hecker
Edición: 4ta Edición
Tipo: Libro
Idioma: English
Chapter 1: Vectors and Matrices
Section 1.1: Fundamental Operations with Vectors
Section 1.2: The Dot Product
Section 1.3: An Introduction to Proof Techniques
Section 1.4: Fundamental Operations with Matrices
Section 1.5: Matrix Multiplication
Chapter 2: Systems of Linear Equations
Section 2.1: Solving Linear Systems Using Gaussian Elimination
Section 2.2: Gauss-Jordan Row Reduction and Reduced Row Echelon Form
Section 2.3: Equivalent Systems, Rank, and Row Space
Section 2.4: Inverses of Matrices
Chapter 3: Determinants and Eigenvalues
Section 3.1: Introduction to Determinants
Section 3.2: Determinants and Row Reduction
Section 3.3: Further Properties of the Determinant
Section 3.4: Eigenvalues and Diagonalization
Summary of Techniques
Chapter 4: Finite Dimensional Vector Spaces
Section 4.1: Introduction to Vector Spaces
Section 4.2: Subspaces
Section 4.3: Span
Section 4.4: Linear Independence
Section 4.5: Basis and Dimension
Section 4.6: Constructing Special Bases
Section 4.7: Coordinatization
Chapter 5: Linear Transformations
Section 5.1: Introduction to Linear Transformations
Section 5.2: The Matrix of a Linear Transformation
Section 5.3: The Dimension Theorem
Section 5.4: Isomorphism
Section 5.5: Diagonalization of Linear Operators
Chapter 6: Orthogonality
Section 6.1: Orthogonal Bases and the Gram-Schmidt Process
Section 6.2: Orthogonal Complements
Section 6.3: Orthogonal Diagonalization
Chapter 7: Complex Vector Spaces and General Inner Products
Section 7.1: Complex n-Vectors and Matrices
Section 7.2: Complex Eigenvalues and Eigenvectors
Section 7.3: Complex Vector Spaces
Section 7.4: Orthogonality in Cn
Section 7.5: Inner Product Spaces
Chapter 8: Additional Applications
Section 8.1: Graph Theory
Section 8.2: Ohm's Law
Section 8.3: Least-Squares Polynomials
Section 8.4: Markov Chains
Section 8.5: Hill Substitution: An Introduction to Coding Theory
Section 8.6: Change of Variables and the Jacobian
Section 8.7: Rotation of Axes
Section 8.8: Computer Graphics
Section 8.9: Differential Equations
Section 8.10: Least-Squares Solutions for Inconsistent Systems
Section 8.11: Max-Min Problems in Rn and the Hessian Matrix
Chapter 9: Numerical Methods
Section 9.1: Numerical Methods for Solving Systems
Section 9.2: LDU Decomposition
Section 9.3: The Power Method for Finding Eigenvalues
Chapter 10: Further Horizons
Section 10.1: Elementary Matrices
Section 10.2: Function Spaces
Section 10.3: Quadratic Forms
Appendix A: Miscellaneous Proofs
Appendix B: Functions
Appendix C: Complex Numbers
Appendix D: Computers and Calculators
Appendix E: Answers to Selected Exercises
No hay comentarios:
Publicar un comentario