Kreyszig introduce a ingenieros y científicos de la computación en temas avanzados de matemáticas, ya que se refieren a problemas prácticos. El material está organizado en siete partes independientes: Álgebra Lineal, Cálculo Vectorial, Análisis de Fourier y Ecuaciones en Derivadas Parciales; Análisis Complejo; Métodos Numéricos; Optimización, Gráficos, y Probabilidad y Estadística.
Título: Advaced Engineering Mathematics, 8th Edition
Autor: Erwin Kreyszig
Edición: 8va Edición
Volumen: Volumen 1 | Volumen 2
Tipo: Solucionario
Idioma: Ingles
Autor: Erwin Kreyszig
Edición: 8va Edición
Volumen: Volumen 1 | Volumen 2
Tipo: Solucionario
Idioma: Ingles
PART A Ordinary Differential Equations (ODEs)
CHAPTER 1: First-Order ODEs
CHAPTER 2: Second-Order Linear ODEs
CHAPTER 3: Higher Order Linear ODEs
CHAPTER 4: Systems of ODEs. Phase Plane. Qualitative Methods
CHAPTER 5: Series Solutions of ODEs. Special Functions
CHAPTER 6: Laplace Transforms
CHAPTER 1: First-Order ODEs
CHAPTER 2: Second-Order Linear ODEs
CHAPTER 3: Higher Order Linear ODEs
CHAPTER 4: Systems of ODEs. Phase Plane. Qualitative Methods
CHAPTER 5: Series Solutions of ODEs. Special Functions
CHAPTER 6: Laplace Transforms
PART B Linear Algebra. Vector Calculus
CHAPTER 7: Linear Algebra: Matrices, Vectors, Determinants. Linear Systems
CHAPTER 8: Linear Algebra: Matrix Eigenvalue Problems
CHAPTER 9: Vector Differential Calculus. Grad, Div, Curl
CHAPTER 10: Vector Integral Calculus. Integral Theorems
CHAPTER 7: Linear Algebra: Matrices, Vectors, Determinants. Linear Systems
CHAPTER 8: Linear Algebra: Matrix Eigenvalue Problems
CHAPTER 9: Vector Differential Calculus. Grad, Div, Curl
CHAPTER 10: Vector Integral Calculus. Integral Theorems
PART C Fourier Analysis. Partial Differential Equations
(PDEs)
CHAPTER 11: Fourier Analysis
CHAPTER 12: Partial Differential Equations (PDEs) PART D Complex Analysis
CHAPTER 13: Complex Numbers and Functions. Complex Differentiation
CHAPTER 14: Complex Integration
CHAPTER 15: Power Series, Taylor Series
CHAPTER 16: Laurent Series. Residue Integration
CHAPTER 17: Conformal Mapping
CHAPTER 18: Complex Analysis and Potential Theory
CHAPTER 11: Fourier Analysis
CHAPTER 12: Partial Differential Equations (PDEs) PART D Complex Analysis
CHAPTER 13: Complex Numbers and Functions. Complex Differentiation
CHAPTER 14: Complex Integration
CHAPTER 15: Power Series, Taylor Series
CHAPTER 16: Laurent Series. Residue Integration
CHAPTER 17: Conformal Mapping
CHAPTER 18: Complex Analysis and Potential Theory
PART E Numeric Analysis
CHAPTER 19: Numerics in General
CHAPTER 20: Numeric Linear Algebra
CHAPTER 21: Numerics for ODEs and PDEs
CHAPTER 19: Numerics in General
CHAPTER 20: Numeric Linear Algebra
CHAPTER 21: Numerics for ODEs and PDEs
PART F Optimization, Graphs
CHAPTER 22: Unconstrained Optimization. Linear Programming
CHAPTER 23: Graphs. Combinatorial Optimization
CHAPTER 22: Unconstrained Optimization. Linear Programming
CHAPTER 23: Graphs. Combinatorial Optimization
PART G Probability, Statistics
CHAPTER 24: Data Analysis. Probability Theory
CHAPTER 25: Mathematical Statistics
APPENDIX 1 References
APPENDIX 2 Answers to Odd-Numbered Problems
APPENDIX 3 Auxiliary Material
APPENDIX 4 Additional Proofs
APPENDIX 5 Tables
APPENDIX 2 Answers to Odd-Numbered Problems
APPENDIX 3 Auxiliary Material
APPENDIX 4 Additional Proofs
APPENDIX 5 Tables
No hay comentarios:
Publicar un comentario